CH237 手册 1 <u>http://wch.cn</u>

Type-A/C双口快充协议芯片CH237

手册 版本: 1F http://wch.cn

1. 概述

CH237为Type-A/C双口快充协议芯片,单芯片集成USB PD等多种协议,支持一个Type-C接口和一个Type-A接口同时使用,支持PD2. 0/3. 0、PPS、BC1. 2等主流快充协议,支持AC-DC和DC-DC恒压、恒流输出模式反馈调节,高集成度,外围精简。集成VBUS检测与放电功能,并且提供过流、过温、过压、欠压保护等。CH237可广泛应用于交流电源适配器、车载充电器、UPS、移动电源等各类场合。

2. 功能特点

- 支持3.3V-24V宽电压输入,调压精度20mV
- 支持一个Type-C接口和一个Type-A接口同时使用
- 支持PD2. 0/3. 0、PPS、BC1. 2等多种快充协议
- 线缆补偿100mV/A
- Type-C接口可选N-MOS或P-MOS
- 支持AC-DC和DC-DC恒压、恒流高压电源管理
- 单芯片高集成度,外围精简,成本低
- 内置过流保护OCP、过温保护OTP、电源过压保护OVP、欠压保护UVP

3. 应用场合

- 双口交流电源适配器
- 双口车载充电器
- UPS
- 移动电源

4. 封装

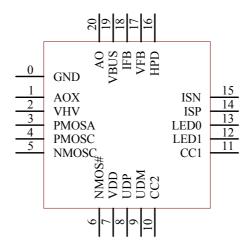


图4.1 CH237D (QFN20_3*3) 引脚排列

5. 引脚

引脚号	引脚名称	类型	引脚说明
2	VHV	高压电源	高压正电源输入端,外接1uF退耦电容
0	GND	电源	公共接地端
7	VDD	工作电源	内部电源调节器LDO输出端,外接1uF退耦电容
19	VBUS	高压输入	VBUS放电端口
3	PMOSA		用于驱动Type-A接口P-MOS栅极
4	PMOSC	单向输出	用于驱动Type-C接口P-MOS栅极
5	NMOSC		用于驱动Type-C接口N-MOS栅极
6	NMOS#	配置输入	Type-C接口N-MOS驱动使能#
14	ISP	差分放大	低压端的电流检测模块的正输入端
15	ISN	模拟输入	低压端的电流检测模块的负输入端
17	VFB	模拟输入	电源管理恒压反馈连接端
18	IFB	1天1以刊1八	电源管理恒流反馈连接端
20	AO	高电压 模拟输出	电源管理反馈驱动端
1	AOX	高电压 模拟输出	电源管理反馈驱动端
16	HPD	模拟输入	Type-A接口插入检测引脚
8, 9,	UDP, UDM,	双向三态	USB总线D+/D-数据线
11, 10	CC1, CC2	模拟双向	Type-CPD通讯线CC1/CC2
13, 12	LEDO, LED1	低压输出	LED阳极驱动端, 定制功能

6. 引脚功能描述

6.1. 供电引脚: VHV和VDD

CH237的VHV引脚为芯片的高压电源输入引脚,外部需连接电源的输出端,芯片内部连接到LD0及电源反馈电路。VDD引脚为CH237内部LD0的输出引出端,外部需连接1uF退耦电容。

6.2. 电源反馈相关引脚: AO, IFB和VFB

CH237芯片用于控制AC-DC电源,CH237内部电源反馈环路通过AO引脚控制电源中的光耦电流以调整电源输出电压。IFB,VFB引脚需各连接一环路补偿电容至AO引脚(参考本文档第8章节)。改变VFB引脚的电容值可改变CH237对输出电压的调节速度,以适应不同频率的AC-DC电源。

CH237用于控制DC-DC电源时,需参考图8.2设计。

6.3. PD和USB通讯引脚CC1/CC2/UDP/UDM

CC1/CC2引脚用于Type-C接口的设备接入检测、正反插检测及Type-CPD通讯,内置可配置的电流源,默认为3A电流广播。Type-C接口中的D+/D-应短接。

UDP/UDM引脚用于Type-A接口的快充协议通讯握手。

6. 4. 放电引脚VBUS

VBUS引脚用于泄放VBUS上的能量,需连接至VHV。如果CH237检测到VBUS电压过高,则打开VBUS 放电功能,直到VBUS电压处于安全电压以内。

6.5. Type-A接口MOS控制引脚PMOSA

CH237通过PMOSA引脚控制Type-A接口的P-MOS,以控制Type-A接口电能的通断。

6. 6. Type-C接口MOS控制引脚PMOSC, NMOSC, NMOS#

当电源通路使用N-MOS时,需将NMOS#引脚连接至GND,并使用芯片NMOSC引脚连接至外部N-MOS的栅极,以控制Type-C接口电能通断。

当电源通路使用P-MOS时,需将NMOS#引脚悬空,短接芯片NMOSC与PMOSC引脚,将PMOSC引脚连接至外部P-MOS的栅极,以控制Type-C接口电能通断。

6.7. Type-A接口插入检测引脚HPD

CH237通过HPD引脚检测Type-A接口设备的插入,以实现双口同时充电。HPD引脚和VDD引脚分别串联电阻至Type-A接口VBUS,当HPD引脚上电压持续低于2V时,将触发Type-A接口插入事件。

6.8. 差分电流检测引脚ISP/ISN

CH237内部集成有高精度差分放大器,用于采样电流,对应的输入端引脚为ISP和ISN。

在使用时,ISP/ISN需串接RC滤波电路后使用差分走线连接到采样电阻两端,不可将ISN引脚直接连接到GND引脚或PCB上的GND网络。

7. 保护功能描述

7.1. 过压保护

CH237通过检测VHV引脚上的电压实现过压保护功能,过压保护阈值电压的典型值在25.6V。当发生过压保护后,CH237控制充电接口MOS关断,并进入放电状态直到所有故障信号消失,然后重新建立快充握手连接。

7. 2. 讨温保护

CH237在温度超过过温保护触发温度(典型值147 $\mathbb C$)时将触发过温保护,当过温保护被触发后,CH237控制充电接口MOS关断,进入放电状态,直到温度低于过温保护解除温度(典型值100 $\mathbb C$)且所有故障信号消失,然后重新建立快充握手连接。

7.3. 过流保护

CH237检测采样到的电流超过门限电流时会发生过流保护,门限电流根据当前电压档位和接口使用状况实时调整,一般为当前电压额定电流的110%,例如PD5V@3A对应的门限电流的典型值为3.3A。当发生过流保护后,CH237控制充电接口MOS关断,并进入放电状态直到所有故障信号消失,然后重新建立快充握手连接。

7. 4. 欠压保护

当VHV引脚上的电压低于欠压保护阈值电压(典型值2.4V)时,CH237将触发欠压保护。当发生欠压保护后,CH237控制充电接口MOS关断,并进入放电状态直到所有故障信号消失,然后重新建立快充握手连接。

8. 应用参考电路

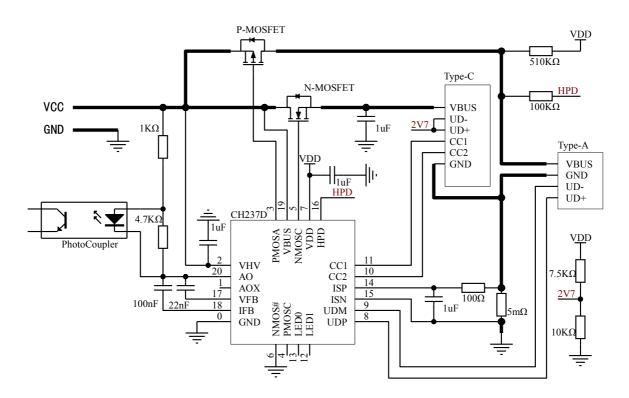


图 8.1 CH237D 配合 AC-DC 电源时的 A+C 双口单快充参考原理图

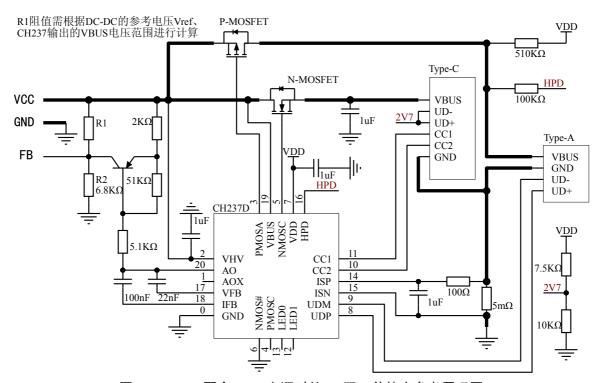


图8.2 CH237D配合DC-DC电源时的A+C双口单快充参考原理图

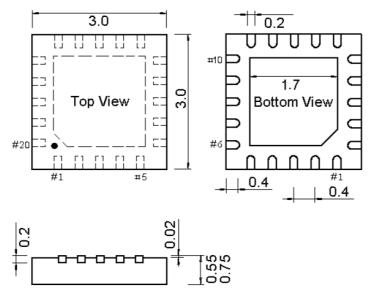
CH237 用于 DC-DC 电源时,需配置 R1 电阻,使 DC-DC 的默认输出电压比 VBUS 最高输出电压高 $1\sim$ 2V, 例如: VBUS 输出电压范围是 5-12V 时,需配置 DC-DC 默认输出电压为 14V,此时 R1=14/Vref*6. 8K-6. 8K,Vref 为 DC-DC 的参考电压,当 Vref=1. 25V 时,则 R1=68K。

9. 参数

9.1. 绝对最大值

(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	147	$^{\circ}\!\mathbb{C}$
TS	储存时的环境温度	-55	147	$^{\circ}\!\mathbb{C}$
VDD	工作电源电压(VDD引脚接电源,GND引脚接地)	-0. 5	6	٧
VHV	高压电源电压(VHV引脚接电源,GND引脚接地)	-0. 5	25	٧
VIOHX	PMOSA, PMOSC, NMOSC引脚上的电压	-0. 5	VHV+6. 5	٧
VIO	UDP, UDM, ISP, ISN, VFB, IFB, LEDO, LED1, HPD引脚上的电压	-0. 5	VDD+0. 5	٧
VIOCC	CC1, CC2引脚上的电压	-0. 5	20	٧
VIOHV	VBUS, A0引脚上的电压	-0. 5	VHV+0. 5	٧
PD	整个芯片的最大功耗(VHV电压*电流+VBUS放电功耗)	-0. 5	400	mW
ESD	人体模型(HBM)		2	KV


9. 2. 电气参数

(测试条件: TA=25℃)

名称	参数说明	最小值	典型值	最大值	单位
VDD	VDD引脚上的电压	4. 6	4. 7	4. 8	٧
VHV	VHV引脚上的电压	3. 3		22	٧
VIOHV	AO, VBUS引脚上的电压	0		22	٧
VIOLV	CC1, CC2, UDP, UDM引脚上的电压	0		VDD	٧
VOVP	过压保护参考阈值电压		25. 6		٧
VUVP	欠压保护参考阈值电压		2. 4		٧
T0TPT	过温保护触发温度		147±15		$^{\circ}\mathbb{C}$
TOTPR	过温保护解除温度		100±15		$^{\circ}\mathbb{C}$

10. 封装信息

封装形式	塑体宽度	引脚间距		封装型号
QFN20	3*3mm	0. 40mm	15.7mil	CH237D

说明: 封装信息图中标注的单位均为mm(毫米)。

11. 订货信息

	CH237	D	1	Α	-xxx
芯片型号					
芯片封装	D :QFN20 3*3mm				
输出电压档位	配置码含义详见附表				
电源配置	A :AO 引脚驱动				
定制型号编码	无 :标准型 XXX :定制	型号编码			

订货标号含义及输出电压档位

	70 天间,1日入入1111日,10年日日									
取墨 切	输出电压配置									
配置码	PDO 1	PDO 2	PDO 3	PDO 4	PDO 5	PDO 6	PDO 7	QC 3.0		
1	5V@3A	9V@2A	12V@1.5A			3.3~5.9V@3A	3.3~11V@2A	3.6~12V		
2	5V@3A	9V@3A	12V@2.25A			3.3~5.9V@3A	3.3~11V@3A	3.6~12V		
3	5V@3A	9V@3A	12V@2.5A			3.3~12V@2.5A		3.6~12V		
4	5V@3A	9V@3A	12V@2.5A	15V@2 A	20V@1.5A	3.3~5.9V@3A	3.3~11V@3A	3.6~12V		
5	5V@3A	9V@3A	12V@3A	15V@3 A	20V@2.25 A	3.3~20V@2.25A		3.6~20V		
6	5V@3A	9V@3A	12V@3A	15V@3 A	20V@3A	3.3~20V@3A		3.6~20V		
7	5V@3A	9V@3A	12V@3A		20V@1.8A	3.3~12V@3A		3.6~12V		
8	5V@3A	9V@3A	12V@3A			3.3~5.9V@3A	3.3 ~ 12V@3A	3.6 ~ 12V		
9	5V@3A	9V@2.22A	12V@1.67A			3.3~5.9V@3A	3.3~11V@2A	3.6 ~ 12V		

CH237 手册 7 <u>http://wch.cn</u>

Α	5V@3A	9V@2.77A			3.3~5.9V@3A	3.3~11V@2.25 A	3.6 ~ 12V
其他				定制			